
High Speed Navigation For Quadrotors With Limited Onboard Sensing

Sikang Liu, Michael Watterson, Sarah Tang, and Vijay Kumar1

Abstract— We address the problem of high speed autonomous
navigation of quadrotor micro aerial vehicles with limited
onboard sensing and computation. In particular, we propose
a dual range planning horizon method to safely and quickly
navigate quadrotors to specified goal locations in previously
unknown and unstructured environments. In each planning
epoch, a short-range planner uses a local map to generate a
new trajectory. At the same time, a safe stopping policy is
found. This allows the robot to come to an emergency halt
when necessary. Our algorithm guarantees collision avoidance
and demonstrates important advances in real-time planning.
First, our novel short range planning method allows us to
generate and re-plan trajectories that are dynamically feasible,
comply with state and input constraints, and avoid obstacles in
real-time. Further, previous planning algorithms abstract away
the obstacle detection problem by assuming the instantaneous
availability of geometric information about the environment.
In contrast, our method addresses the challenge of using the
raw sensor data to form a map and navigate in real-time.
Finally, in addition to simulation examples, we provide physical
experiments that demonstrate the entire algorithmic pipeline
from obstacle detection to trajectory execution.

I. INTRODUCTION

Micro Aerial Vehicles (MAVs), in particular quadrotors,
have become promising platforms for many applications.
As a result, many control, planning, and perception meth-
ods have been proposed for these systems. However, these
problems have mostly been approached in isolation. Plan-
ning and control algorithms for aggressive maneuvers are
often demonstrated within a motion capture space where
the perception challenge is eliminated, and many perception
solutions have only been validated with low-speed flight in
environments with sparse obstacles. In contrast, this paper
addresses the problem of fast flight through unknown en-
vironments, where the vehicle must both sense and localize
obstacles as well as plan and execute trajectories in real-time.

The design of geometric controllers [1] for quadrotors has
allowed for the precise tracking of aggressive trajectories,
and as a result, a number of planning algorithms have
been proposed and successfully validated on experimental
platforms. For example, Mellinger et al. [2] [3] and Deits
and Tedrake [4] formulate the problem as a Mixed Integer
Quadratic Program (MIQP). However, the computation time
required to find a solution makes this approach impractical
for real-time planning. Computationally faster techniques
include those of Hehn and D’Andrea [5], which generates
minimum time trajectories using optimal control techniques,

1S. Liu, M. Watterson, S. Tang, and V. Kumar are with the General
Robotics, Automation, Sensing & Perception (GRASP) Laboratory, Univer-
sity of Pennsylvania, Phildadelphia, PA 19104, USA {sikang, wami,
sytang, kumar} @seas.upenn.edu

and Richter et al. [6], which formulates the trajectory gener-
ation problem as a Quadratic Program (QP) that minimizes
the integral of the trajectory’s snap squared. However, these
methods have only been validated in scenarios where the en-
vironment is completely known a priori. In particular, Hehn
and D’Andera [5] assume the environment is obstacle-free
and Richter et al. [6] assume an OctoMap [7] representation
of the environment is available.

Past works have also addressed the problem of navigation
in unknown or partially known environments. Pivtoraiko
et al. [8] generate a set of motion primitives, which they
use to incrementally re-plan towards a goal. Bellingham et
al. [9] solve a Mixed Integer Linear Program over a receding
horizon to find trajectories that incrementally move towards a
goal, incorporating a collision avoidance heuristic. Watterson
and Kumar [10] propose a receding horizon control policy
(RHCP), which offers guarantees of algorithm completeness
and collision avoidance. While these algorithms address
demonstrate real-time generation of new trajectories as infor-
mation about the environment becomes known, they assume
the obstacle detection problem is solved and the robot can
instantaneously query the properties of any obstacle within
in a given sensing radius, such as location and geometry. In
reality, creating and maintaining a map from raw sensor data
is a nontrivial step.

In this work, we present an algorithm for fast naviga-
tion through unstructured and unknown environments. We
define fast navigation as finding a high-speed trajectory for
the MAV under dynamic constraints, limited sensor range,
and limited computational capabilities. In particular, our
algorithm address three novel challenges. First, we detect
obstacles and create a map representation of the environ-
ment on-the-fly, explicitly incorporating the computational
demands of translating raw sensor data to a map for trajectory
planning. Second, we propose a novel short range planning
policy that includes a frontier-based method for finding
promising paths towards the robot’s final goal and fast convex
segmentation of a provided map that allows for real-time
generation of optimal trajectories which accommodate the
vehicle’s dynamics. Finally, we present simulation examples
and experimental results that demonstrate the complete al-
gorithmic pipeline from perception of obstacles to execution
of a designed trajectory.

This paper will proceed as follows. Section II introduces
the overall algorithm. Section III describes the perception,
trajectory generation, and control protocols. Section IV
discusses the algorithm’s safety and optimality guarantees.
Section V presents simulation examples and experimental
validation. Conclusions are presented in Section VI.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

II. ALGORITHM OVERVIEW

A. Problem Formulation

We model the quadrotor as a rigid body whose config-
uration is an element of SE(3). Since the quadrotor is a
differentially flat system [2], we can use its flat outputs,
x = [x y z ψ]T , ψ is the yaw of the robot, and
their derivatives to completely represent the robot’s state.
Assuming ψ remains constant while executing a trajectory,
we denote the robot state at time t:

Xt = [xT ẋT ẍT ...
xT]T = [xT vT aT jT]T (1)

Here, v, a, j ∈ R3 represent the robot’s velocity, accelera-
tion and jerk, respectively. A goal is defined as a position g ∈
R3. Given a goal in an unknown environment, our problem
is to navigate the robot to this goal as fast as possible under
imposed maximum velocity, acceleration and jerk limits,
denoted vmax, amax, jmax, respectively. We model both
the vehicle dynamics and perception sensor while aiming
to achieve real-time computation. As a result, the speed of
our robot’s trajectories depends on the available computation
time. Therefore “as fast as possible” does not necessarily
mean computing globally time optimal trajectories.

B. Control Policy

Sensor	
Measurement�

Short	Range	Planner�

Long	Range	Planner�

Execute	Trajectory		
	�

Execute	Stop	
Trajectory	�

Failure�

ΥΦ

Fig. 1. Illustration of planning paradigm. The short range planner takes
most recent sensor measurment of the environment and is running repeatedly
until the robot reached the goal or a failure is detected. The failure triggers
execution of stop trajectory Υ and the long range planner.

In this work, we adopt the planning paradigm similar
to [10], which is illustrated in Fig. 1 and 2. Under this
paradigm, planning in two different time horizons guarantees
algorithm completeness while moving as fast as possible. A
short range planner can find local trajectories, denoted Φτ

in Fig. 2, that incrementally move the quadrotor towards its
goal. When the short range planner fails, we can execute a
stopping policy, denoted Υτ , to safely stop the quadrotor
before it collides with an obstacle and switch to a long
range planner. In our algorithm, we use a novel short
range planning technique that processes raw sensor data and
generates safe trajectories in real time.

III. SHORT RANGE PLANNER

When navigating in unknown environments with limited
onboard computation, it is infeasible to use an entire map
to plan at each time step. It is also often unnecessary to do
so, because we only require avoidance of local obstacles in

Mτ+1Mτ

Φτ

Φτ+1

Υτ+1

Υτ

Xτ
Xτ+1

Xt

Fig. 2. Illustration of the planning paradigm. Black rectangle indicates
the map boundary in each planning epoch. Let Xt denotes the state of
robot at time t, Xτ and Xτ+1 indicate the intial state of trajectory Φτ

(black spline) and Φτ+1 (gray spline) respectively and Xτ+1 is the end
state of Φτ too. During exectuing current trajectory Φτ , the robot starts
searching for Φτ+1,Υτ+1 at Xt for next iteration before it finishes Φτ .
If Φτ+1,Υτ+1 are not found, it will execute Υτ (denoted by the red line)
to stop.

the immediate horizon. However, it is also easy to construct
environments in which a local planner will fail.

Traditional planning approaches have combined explo-
ration and SLAM [11] to allow the robot plan collision-free
paths with a temporary goal and an accumulated map. The
proposed short range policy uses a similar idea, but instead
of having the robot explore the entire environment, we define
a temporary goal in current known map which is most likely
to lead the robot to the final desired goal. Based on the local
map and a path found with a graph search algorithm, we
construct a convex decomposition of the local map and use
that to generate a safe trajectory. An overview of this short
range planning process is illustrated in Fig. 3 and detailed
in the following subsections.

Volumetric	Map	
+	Poten2al	Field�

Sensor	
Measurement�

Find	Goals�

Planning�Define	Stop	Policy�

Convex	
Segmenta2on�

Generate	
Trajectory�

ΦΥ

Fig. 3. Short range policy overview. This diagram shows the data flow
inside short range planner in Fig. 1. In the end, the trajectory Φ and
corresponding stop trajectory Υ are generated.

We illustrate the algorithm using the sample problem in
Fig. 4. The desired goal g is outside of M , and robot’s cur-
rent location is at p1. For clarity, we describe the algorithm
with planar illustrations, but the algorithm applies to and is
implemented in 3D.

p1

M

g

Fig. 4. Robot planning to a goal using its current local map M. We define
the current robot position p1 as the origin in M, the length and width of
M are fixed. Solid black lines indicate obstacles detected by the onboard
sensor while dashed lines indicate the frontier edge.

A. Environment Representation and Sensor Model

In order to generate collision-free paths in obstacle-filled
spaces, we require a suitable and practical representation
of the environment. Previous works [3] [10] [12] require a
geometric representation of obstacle surfaces to represent ob-
stacle avoidance constraints as linear inequalities of the form
Ax ≤ b. While it is straightforward to use these inequality
constraints to optimize a safe trajectory, it is non-trivial to
find the normal and boundary of obstacle surfaces from real
sensor data. Thus, these works either assume the environment
is known or abstract perfect perception capabilities that can
automatically detect obstacles’ geometries. As a result, their
methods cannot be directly used in the real-world settings
with a noisy sensor.

An alternative is to create volumetric representations of the
environment, such as an occupancy grid map and its variants.
This type of map can be built by LIDAR, vision, or depth
sensors. Their structure inherently provides a partition of the
free space of the environment along with a connected graph
through which we can search. In past work, an OctoMap has
been used when creating a large scale or high resolution map
to save memory for storage [7]. However, it is slow to build
OctoMap and since we plan in the local map, we won’t run
into the memory storage issue. As a result, we use a uniform
resolution volumetric occupancy grid map in our algorithm.
Such a map will be referred to as an occupancy grid map
when it is a 2D map and a voxel map when it is a 3D map.

Both LIDAR and vision sensors can generate a point cloud
which can be used to create such a volumetric map. For each
cell of the volumetric map, there exists three states: occupied,
free, or unknown. In our algorithm, the robot can only travel
through free cells. While this restriction is conservative, it
will guarantee the vehicle’s safety. Rather than accumulating
consecutive sensor measurements to form a global map, we
only use the latest sensor measurement to create a local
map. This eliminates the need to handle mapping errors from
bad localization in state estimation and decreases the map
computation time to allow for real-time re-planning. Despite
the use of a local map, our method for choosing frontier
points allows us to reach the goal in most circumstances. In
randomly generated environments with cylindrical obstacles,
a local planner can be used almost everywhere [13].

To make the planned trajectories safer, we calculate a dis-
cretized collision cost map corresponding to the volumetric

map. For each cell p in the volumetric map, we find the
distance to the obstacle closest to the cell, h(p), and assign
the cell a collision cost φ(p) according to Eq. 2. Here, Rrobot

is the robot radius and Rd is a constant coefficient and krep
is a predefined constant to scale the value of collision cost. A
typical occupancy grid map and its corresponding collision
cost map are shown in Fig. 5

φ(p) =

⎧

⎪

⎨

⎪

⎩

∞ , h(p) < Rrobot

krep(
Rd−h(p)

Rd−Rrobot
)2 , Rrobot < h(p) < Rd

0 , h(p) > Rd

(2)

h(x)
0 0.5 1 1.5 2

φ
(x

)

-2

-1

0

1

2

3

4

5

6

7

Fig. 5. Left: Occupancy grid map and collision cost map. The robot travels
through the free cells in the occupancy grid map in planning, so we ignore
the unknown area and only assign collision cost φ for free space. Right:
Plot of collision cost φ(p) versus distance to obstacle h(p).

B. Frontiers

Since we plan using only a local map from the most recent
sensor measurement, in many cases, the desired goal g will
be outside of the current map. To guarantee safety, we only
allow the robot to pass through the free space of the current
volumetric map. Consequently, when the desired goal is in
the unknown space, we need to find a set of candidate goals
gs. On the other hand, if the goal g is in the current local
map, we simply set gs→ g.

Given a current 2D occupancy grid map, we identify all
frontiers by searching for connected regions of cells which
border free and unexplored space [14]. The typical frontier
points are shown in Fig. 6. We group the cells defined as
frontier along the same edge, the average of those cells in
frontier group i is selected as a candidate goal gi for planner
according to its cost value φ(gi) and the distance to robot
position ∥gi − p1∥.

In 3D, the current voxel map has many frontier voxels,
making it more difficult to find frontier groups. Thus, instead
of finding frontiers in the 3D voxel map directly, we slice the
voxel map into multiple 2D occupancy grid maps at different
heights and find the frontiers of each 2D map using the
method previously described.

C. Path Search

We consider each voxel in the voxel map as a node and
build a graph representation of the environment. We preform
an A⋆ search on this graph to find a path through the voxels
from the current robot location to each candidate goal g ∈ gs.
In anticipation of real world noise, we want to minimize the

g1 g2

g3

g4

g5

M

g

p1

Fig. 6. Frontiers of the example occupancy grid map. gs = {gi, i=1,...,5},
where gi is indicated by the purple dot and they are average point of each
frontier groups (dashed edges).

times at which the robot moves close to obstacles. To this
end, we use the constructed collision cost map to bias the
robot from prolonged movement in free space close to walls
by defining edge weights as given in Eq. 3. Here, d(pi,pj)
is the Euclidean distance between two connected cell pi and
pj . The effect of the collision cost φ is demonstrated in
Fig. 7.

c(pi,pj) = d(pi,pj) + φ(pj) (3)

g4

g

p1 p2

p
′

2 p3

M

Fig. 7. To go to g4, path p1 − p′2 − p3 − g4 is considered to be safer
than p1 − p2 − p3 − g4 since p′2 is at a better location compared to p2
such that the robot is farhter away from walls.

We generate paths to each candidate goal in gs and sort
the output paths in order of increasing distance between the
candidate goal and the desired goal g. We will later generate
trajectories from each path in this order until we find a
feasible one.

D. Stopping Policy

The path we obtain from the previous planning step goes
directly to the best candidate goal g. However, there could
be an obstacle close to the frontier point g that is not seen
in the current map. The region behind frontier g will be
explored when the quadrotor arrives at g, after executing its
planned trajectory. In the worst scenario, an obstacle could be
revealed to be right behind g. Thus, for guaranteed collision
avoidance, we would have to set the desired velocity at g to
be zero. However, having the robot come to a full stop at
every short range planing iteration is too conservative and
does not allow for fast flight to a given goal.

Instead, as illustrated in Fig. 8, we generate our trajectory
to an alternate point, g′, with final velocity vf . Such that g′

in the intersection of the circle of radius ds centered at g
and the path P Where ds is defined as:

ds = Rrobot +
v2max

2amax
(4)

When robot reaches g′ with any vf ≤ vmax, it will be able to
decelerate to a halt at a position g′′ before g along a straight
line. We refer to this stopping maneuver as a stop policy. To
generate this stop policy, Υ, we use g′ and predict a final
position g′′ according to velocity at g′. We adopt the fast
algorithm in [6] to generate Υ with respect to g′, g′′, vf .

M

g

g
g
′

g
′′

ds

Fig. 8. Reducing path length by distance needed to stop. The robot needs
length ds to stop, so the section g′g is removed from the path.

E. Convex Segmentation

Before generating the trajectory for a given path, we need
to find a sequence of convex volumes to define the free space.
We find these convex spaces by inflating the selected path
with polygons in the free space such that the region inside
these polygons guaranteed to be collision-free (Algorithm 1).

To do this, we first sample voxels along a line segment l
of the path P . Along each of of voxels in this line, we use
ray tracing to find the maximum interval which is known and
collision free. The boundary of this each of these intervals
Si is a pair of points v±i . For pairs of adjacent voxels, we
form a polygon which the convex hull of the four points
v±i , v

±

i+1. We then check collinearity of corners of adjacent
polygons and merge them if possible. Otherwise we add the
first polygon to segmented list. Similar idea is developed into
3D to generate 3D polyhedrons.

g

M

g
′

Fig. 9. The convex space, blue lines are the boundaries for each polygon.

F. Trajectory Generation

We use a similar trajectory optimization as [10] to find
a minimum jerk trajectory within the convex corridor found
in above section by using a basis (Eq. 5) to formulate (Eq.
6) as a quadratic program (Eq. 7). We first optimize without

Algorithm 1 Convex Segmentation

1: Input: collision cost map φ, path P
2: Output: polygons Bs
3: for Each line segment l ∈ P do

4: voxels: vs← Raytrace(l)
5: for Each voxel vi ∈ vs do

6: Raytrace line r(vi) ⊥ l which intersects vi
7: Si ← {vj ∈ r(vi) | φ(vj) < φthr and φ(vj) ̸=

φunkown}
8: v±i ← ∂Si

9: Bi ← ConvexHull(v±i , v
±

i+1)
10: if v±i−1, v

±

i , v
±

i+1 colinear then

11: Combine Bi−1 and Bi

12: else

13: Bs← {Bs,Bi}
14: end if

15: end for

16: end for

any inequality limits imposed on the velocity, acceleration,
and jerk. We impose the additional inequality constraint that
the velocity of the end of the trajectory is within the cone
of the sensor’s view.

τi(t) =
∑

j

αij · bj(t) (5)

Starting from the initial trapezoidal segment time alloca-
tion in [10], we analytically compute the gradient of the cost
function with respect to segment times to iteratively refine the
time allocations as in [3]. Once the optimal trajectory times
are found, we can re-weight the total time of the trajectory
T =

∑

i

∆ti to be aggressive as possible, while respecting

the constraints on the velocity, acceleration, and jerk.

arg min
τi ∀i

∑

i

∆ti
∫

0
|| d

3

dt3
τi(t)||2dt

s.t dk

dtk
τi(∆ti) =

dk

dtk
τi+1(0) k = 0..3

τi ∈ Pi

τ0(0) = x0

τN (∆tN) = xf

(6)

The cost function is non-convex with respect to the seg-
ment time allocation vector ∆t. We use a trapezoidal time
allocation with an iterative adjustment as in [2] to set times.
The original time allocation plot is shown in Fig. 11

min
α

αᵀDα

s.t Aα = b
Cα ≤ d

(7)

Each trajectory segment is confined to be inside a convex
polyhedron. We use either a uniform sampling of points
along each trajectory segment to confine instead of contin-
uum of the trajectory [2] or a Bezier basis for the bj(t) in
Eq. 7 to confine the convex hull of the trajectory segments
[15] .

The whole processes from Section III-A to III-F generates
a collision-free trajectory in the safe corridor of current

map. Through theses steps, we can find a valid trajectory
to execute, otherwise the short term planner will throw a
failure and trigger the stopping trajectory. This framework is
depicted in Algorithm 2. A typical trajectory output is shown
in Fig. 10.

M

g
′ g

Fig. 10. Red spline is the final trajectory Φ we get from this process. Its
end velocity is denoted by the red arrow. The stop trajectory is generated
according to the end state of Φ.

Algorithm 2 Short range planner. In planning epoch τ , we
are generating the trajectories for next epoch τ +1 (Fig. 2).
Define the set of valid paths as P . P is sorted according to
section III-C.

1: Input: map M, collision cost map φ, desired goal g,
initial position ps

2: Graph G = (M,φ)
3: P ← ∅
4: if g ∈Mfree then

5: P ← A⋆(ps,g,G)
6: else

7: gs← Find Frontiers(M)
8: for g ∈ gs do

9: P = A⋆(ps, g,G)
10: P̃ ⊂ P is the path P shortened by the distance

needed to stop by g
11: P ← {P, P̃}
12: end for

13: P ← sort P according to Cost(P̃)
14: end if

15:

16: for P̃ ∈ P do

17: Bs ← Find Convex Segmentation(P̃) (Algorithm 1)
18: Φ← Trajectory Solver(Xs, P̃ ,Bs)
19: Xe ← Find End State(Φ)
20: Υ← Find Stop Policy(Xe)
21: if Φ,Υ exist then
22: Φτ+1,Υτ+1 ← Φ,Υ
23: break
24: end if
25: end for

IV. ANALYSIS

In this section, we will analyze the sub-optimality we trade
for computational speed and discuss the safety of our system.

A. Sub-optimality

The problem of finding the optimal trajectory in the local
map is not computationally tractable, because it requires
computation of the exact convex segmentation of the avail-
able free space and optimal trajectory of every path in each
homotopy class of paths from the current location to each
frontier point. Instead, we compute a suboptimal trajectory
that holds the following properties:

1) The trajectory’s final state is the closest to the goal.
2) The trajectory’s path is the safest.
3) The trajectory takes the least time to execute.

The first property ensures that the robot goes in the
best possible direction towards the goal. The details of this
process are described in Section III-B.

To satisfy the second property, we utilize planner described
in Section III-C to find the path, where we take into account
the cost of the path’s cells to maximize safety.

Finally, the time allocation plotted in Fig. 11 may not
be optimal because the time is assigned based on the path
returned by A⋆. Even though the times are iteratively re-
fined, the objective is non-convex with respect to the time
allocation. Thus this optimization cannot be guaranteed to
converge to a globally optimum solution.

time(s)

V
(m

/s
) Ve

Vi

Vmax

tf

Fig. 11. Time allocation for path, denote robot initial speed as vi, max
speed as vmax and end speed as ve.

B. Safety

System safety is maintained by several conservative as-
sumptions. Firstly, by always generating a stopping policy
during each planning step, the robot can always stop in
the case that the short range planner cannot find a valid
trajectory. Secondly, during the convex segmentation step,
unknown space is treated as obstacles, so in the event that
everything the robot cannot see is obstacles, it can still stop.

We also limit the maximum velocity based on limits on
the acceleration of our platform and sensor range. Under the
assumption that the robot must stop within distance d, can
decelerate at amax and takes δt seconds to process the sensor
data, it can travel up to velocity v.

v = amax

(

√

δt2 + 2
d

amax
− δt

)

(8)

The lateral acceleration of our platform is proportional to
the sine of its pitch in the direction of travel. For control
purposes we limit this angle and thus the acceleration. With
this relation, we limit our velocity based on our sensor range.

V. EXPERIMENTAL RESULTS

A. Simulation Results

We construct several Gazebo worlds with different ob-
stacles to test our algorithm. In order to verify system’s
performance and safety guarantees, we construct three types
of environments.

First, we demonstrate the ability of the stopping policy to
guarantee safety. In Fig. 12, the final goal is behind a wall
at the end of a long corridor. The quadrotor, initially sensing
free space in front of itself, accelerates to its maximum
velocity vmax. However, as soon it detects the wall, it
executes its stop policy to safely halt in front of the wall
before a collision occurs. This result can be seen in the
video. With a sensor range of 4.5m, maximum acceleration
of 5m/s2, and prediction time δt = 0.15s, the quadrotor
reaches a maximum velocity of 4m/s. This is very close to
the theoretical maximum velocity we can achieve according
to Eq. 8, which in this case is 5.6m/s.

Fig. 12. Gazebo simulation environment type 1: long corridor with a wall
in the end.

In the second type of environment, shown in Fig. 13, we
place various 3D obstacles including table, cabinet, vertical
pillar, window and horizon bar. The robot is able to avoid
all these obstacles to successfully reach the goal at the end
of corridor. In particular, the algorithm is able to adjust the
speed of the robot to around 1m/s to accommodate the high
density of the obstacles. The simulation results can be found
in submitted video.

Fig. 13. Gazebo simulation environment 2. It verifies our algorithm’s
capability to avoid all kinds of obstacles.

Finally, we want to benchmark system performance with
different obstacle densities. We create a total of 11 envi-
ronments with varying obstacle densities, three examples
of which are shown in Fig. 14, and test various maximum
velocity and acceleration constraints. The required times to
reach the given goal are plotted in Fig. 15. As expected,
the flight time increases with the increasing obstacle density.
However, from the second figure, we can see that maximum
accelerations in a reasonable range result in similar flight
times.

B. Hardware Experiments

Fig. 16 illustrates our experimental platform. We use an
AscTec Pelican quadrotor with a 3.4 GHz dual-core i7 Intel

Fig. 14. We fill a 40m × 10m × 4m space with cylinders. From top to
bottom, the number of pillars in the space are 5, 25, 50. The orange dots
on the left indicate the robot start positions and the red dots on the right
denote goal positions.

obstacle density
0 5 10 15 20 25 30 35 40 45 50

tim
e
(s

)

15

20

25

30

35

40

45
a = 2.5 m/s

2

v = 1.5m/s
v = 2.0m/s
v = 2.5m/s

obstacle density
0 5 10 15 20 25 30 35 40 45 50

tim
e
(s

)

15

20

25

30

35

40

45
v = 2.0 m/s

a = 2.5m/s2

a = 5.0m/s2

Fig. 15. Left figure: desired (maximum) speed at 1.5, 2.0, 2.5m/s
respectively, the dashed line is the lower bound on time for traveling with
corresponding speed for 40m and a maximum acceleration of 5.0m/s2.
Right figure: maximum acceleration at 2.5, 5.0m/s2 respectively with
desired speed of 2.0m/s

NUC. A Primesense RGBD sensor is mounted in front for
map creation and obstacle detection in 3D environments. The
total weight of this platform is 1.5kg, giving it a thrust to
weight ratio of 2.4.

Fig. 16. Asctec Pelican with Primesense RGBD sensor.

We use a non-linear controller in SE(3) [16] to control
the quadrotor and use a Qualisys [17] motion capture system
for localization. Note that the motion capture system is
used only for odometry measurements of the robot. All
obstacle detection and map creation is done using the on-
board Primesense RGBD sensor. The range of depth sensor
is 4.5m, and δt is set to be 0.15s.

We demonstrate the capabilities of our system through two
experiments, shown in Fig. 17 and Fig. 20.

Like the first simulation environment, the first experiment
demonstrates the robot coming to a halt in front of a
wall-like obstacle. We use this to demonstrate safety, even
when the robot is moving near its maximum velocity. The
maximum velocity is 3m/s, with a maximum acceleration
of 5m/s2. With these values, it theoretically takes 0.9m to
stop, which is within the sensor range of 4.5m. The robot
was able to successfully stop before hitting a wall created
by a white curtain (Fig. 19), and its position and velocity
profiles throughout the flight are shown in Fig. 18. During
this experiment, the trajectory and sensor are visualized in
Fig. 19.

x�

y�

Fig. 17. Desired goal is labeled as the red star in the left image, the
quadrotor is facing forward to the goal, but in between there is a wall. The
quadrotor cannot detect the wall until it gets close enough.

Time (s)
0 1 2 3 4 5 6 7 8 9 10

x
(m

)

-8

-6

-4

-2

0

2

4

6

Odometry
Commanded

Time (s)
0 1 2 3 4 5 6 7 8 9 10

v x (m
)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5 Odometry
Commanded

Fig. 18. The plot of trajectory command and quadrotor odometry in x-axis
which is the direction picture from right to left in Fig. 17. The solid blue
line is the desired, and the dashed read line is that measured by the Qualisys
Sytem [17].

Fig. 19. Left image: Blue small boxes are the ground detected by depth
sensor, red boxes are virtual points, red arrow shows the position of desired
goal. Right image: the robot stopped in front the the wall, since it cannot
find a valid trajectory to go around the obstacle to reach the goal.

We place two pillars in the second environment to show
the collision-avoidance behavior of our algorithm. The robot
is able to fly around the obstacles and reach the desired goal.
The maximum speed in this experiment is 1m/s.

VI. CONCLUSION

Our planning algorithm is able to generate, execute, and
re-plan trajectories on computationally constrained hardware

x�

y�

Fig. 20. Desired goal is labeled as the red star in the left image, the
quadrotor is facing forward to the goal, but in between there are two pillars.

Fig. 21. Left upper image: initial state, the pillars are detected by depth
sensor. Right upper image: the robot is tracking the trajectory (yellow
spline). Bottom image: the robot follows the S-curve and reaches the goal,
the wall is in front of the robot.

in real-time using simulated and real sensor data. We pro-
pose and implement a planning algorithm which imposes
a collision-avoidance cost map on top of a probabilist
occupancy representation of an incrementally observed en-
vironment. From this cost map, we find a frontier and a
convex corridor to generate a optimal trajectory. Over a
short range we also generate a stopping policy which can be
executed in case of future failure of the local planner. In this
failure mode, we use a long range planner to navigate around
obstacles can trap any short range planner. We validate this
algorithm in simulated environments, and outdoor test flights.

VII. ACKNOWLEDGMENTS

We gratefully acknowledge the support of ARL grant
W911NF-08-2-0004, ONR grants N00014-07-1-0829, and
N00014-09-1-1051, NSF grant IIS-1426840, ARO grant
W911NF-13-1-0350 and a NASA Space Technology Re-
search Fellowship. Sarah Tang is supported by NSF Research
Fellowship Grant No. DGE-1321851.

REFERENCES

[1] T. Lee, M. Leok, and N. H. McClamroch, “Stable manifolds of saddle
points for pendulum dynamics on s2 and so(3),” in IEEE Conference
on Decision and Control, Dec 2011, p. 39153921.

[2] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proceedings of the 2011 IEEE International
Conference on Robotics and Automation (ICRA), 2011, pp. 2520 –
2525.

[3] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
Proceedings of the 2012 IEEE International Conference on Robotics
and Automation (ICRA), 2012, pp. 477–483.

[4] R. Deits and R. Tedrake, “Efficient mixed-integer planning for uavs
in cluttered environments,” in Proceedings of the 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2015, pp.
42–49.

[5] M. Hehn and R. D’Andrea, “Real-time trajectory generation for
interception maneuvers with quadrocopters,” in 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2012,
pp. 4979–4984.

[6] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments,” in
Proceedings of the International Symposium of Robotics Research
(ISRR 2013), 2013.

[7] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[8] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-
uav motion replanning for exploring unknown environments,” in
Proceedings of the 2013 IEEE International Conference on Robotics
and Automation (ICRA), 2013, pp. 2452–2458.

[9] J. Bellingham, A. Richards, and J. P. How, “Receding horizon control
of autonomous aerial vehicles,” in Proceedings of the 2002 American
Control Conference (ACC), vol. 5, 2002, pp. 3741–3746.

[10] M. Watterson and V. Kumar, “Safe receding horizon control for
aggressive mav flight with limited range sensing,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015.

[11] B. Charrow, S. Liu, V. Kumar, and N. Michael, “Information-theoretic
mapping using cauchy-schwarz quadratic mutual information,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2015.

[12] J. Israelsen, M. Beall, D. Bareiss, D. Stuart, E. Keeney, and J. van den
Berg, “Automatic collision avoidance for manually tele-operated un-
manned aerial vehicles,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 6638–6643.

[13] S. Karaman and E. Frazzoli, “High-speed flight in an ergodic
forest,” in Robotics and Automation (ICRA), 2012 IEEE International
Conference on. IEEE, 2012, pp. 2899–2906. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6225235

[14] B. Yamauchi, “Frontier-based exploration using multiple robots,” in
Proceedings of the second international conference on Autonomous
agents. ACM, 1998, pp. 47–53.

[15] M. E. Flores, “Real-time trajectory generation for constrained
nonlinear dynamical systems using non-uniform rational B-spline basis
functions,” Ph.D. dissertation, California Institute of Technology, 2007.
[Online]. Available: http://core.ac.uk/download/pdf/11809687.pdf

[16] T. Lee, M. Leoky, and N. H. McClamroch, “Geometric tracking control
of a quadrotor uav on se (3),” in Decision and Control (CDC), 2010
49th IEEE Conference on. IEEE, 2010, pp. 5420–5425.

[17] “Qualisys motion capture system.” [Online]. Available: http://www.
qualisys.com/

